A Portmanteau Test for Serially Correlated Errors in Fixed Effects Models

نویسندگان

  • Atsushi Inoue
  • Gary Solon
چکیده

We propose a portmanteau test for serial correlation of the error term in a fixed effects model. The test is derived as a Lagrange multiplier test, but it also has a straightforward Wald test interpretation. In Monte Carlo experiments, the test displays good size and power properties. ∗The authors thank the co-editor, the referee, David Drukker, Christian Hansen, and Jeffrey Wooldridge for their helpful comments. Corresponding author: Gary Solon, Department of Economics, Lorch Hall, University of Michigan, Ann Arbor, MI 48109-1220, USA. Telephone: 734-763-1306. Fax: 734-764-2769. E-mail: [email protected]. A Portmanteau Test for Serially Correlated Errors in Fixed Effects Models

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Serial Correlation in Fixed Effects Regression Models: the Ljung-Box Test for Panel Data

Testing the presence of serial correlation in the error terms of a fixed effects regression model is important for many reasons. While there have been a number of testing procedures developed so far (see, e.g., Bhargava, Franzini and Narendranathan (1982), Baltagi and Li (1995), Baltagi and Wu (1999), Bera et al. (2001), Wooldridge (2002), Drukker (2003), Hong and Kao (2004) and Inoue and Solon...

متن کامل

Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms

We consider portmanteau tests for testing the adequacy of structural vector autoregressive moving-average (VARMA) models under the assumption that the errors are uncorrelated but not necessarily independent. The structural forms are mainly used in econometrics to introduce instantaneous relationships between economic variables. We first study the joint distribution of the quasi-maximum likeliho...

متن کامل

Portmanteau Tests for Arma Models with Infinite Variance

Autoregressive and moving-average (ARMA) models with stable Paretian errors is one of the most studied models for time series with infinite variance. Estimation methods for these models have been studied by many researchers but the problem of diagnostic checking fitted models has not been addressed. In this paper, we develop portmanteau tests for checking randomness of a time series with infini...

متن کامل

Portmanteau test statistics for seasonal serial correlation in time series models

The seasonal autoregressive moving average SARMA models have been widely adopted for modeling many time series encountered in economic, hydrology, meteorological, and environmental studies which exhibited strong seasonal behavior with a period s. If the model is adequate, the autocorrelations in the errors at the seasonal and the nonseasonal lags will be zero. Despite the popularity uses of the...

متن کامل

Maximum likelihood estimation of spatially and serially correlated panels with random effects

An estimation framework and a user-friendly software implementation are described for maximum likelihood estimation of panel data models with random effects, a spatially lagged dependent variable and spatially and serially correlated errors. This specification extends static panel data models in the direction of serial error correlation, allowing richer modelling possibilities and more thorough...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005